jueves, 29 de junio de 2017


CIRCUITOS LÓGICOS


.¿Que es un circuito lógico? 

-Los circuitos lógicos son aquellos que manejan la información en forma de “1” y “0”, dos niveles logicos  de voltaje  fijos. “1” nivel alto o “ high ” y “0” nivel bajo o “low”. Los circuitos lógicos están compuestos por elementos digitales como la compuerta AND (Y), compuerta OR (O), compuerta NOT (NO) y combinaciones poco o muy complejas de los circuitosantes mencionados.

Estas combinaciones dan lugar a otros tipos de elementos digitales como los compuertas, entre otros:

La electrónica moderna usa electrónica digital para realizar muchas funciones. Aunque los circuitos electrónicos podrían parecer muy complejos, en realidad se construyen de un número muy grande de circuitos muy simples. En un circuito lógico digital se transmite información binaria (ceros y unos) entre estos circuitos y se consigue un circuito complejo con la combinación de bloques de circuitos simples. La información binaria se representa en la forma de: (ver gráficos) – “0” ó “1”, – “abierto” ó “cerrado” (interruptor), – “On” y “Off”, – “falso” o “verdadero”, etc.
Interruptor cerrado (ON) - Circuitos lógicos                Interruptor abierto (OFFf) - Circuitos lógicos

TIPOS DE CIRCUITOS LÓGICOS
OR:
 Resultado de imagen para puerta xor tabla de verdad 
La puerta OR o compuerta OR es una puerta lógica digital que implementa la disyunción lógica -se comporta de acuerdo a la tabla de verdad mostrada a la derecha. Cuando todas sus entradas están en 0 (cero) o en BAJA, su salida está en 0 o en BAJA, mientras que cuando al menos una o ambas entradas están en 1 o en ALTA, su SALIDA va a estar en 1 o en ALTA. En otro sentido, la función de la compuerta OR efectivamente encuentra el máximo entre dos dígitos binarios
NOR:
Resultado de imagen para puerta nor
La puerta NOR o compuerta NOR es una puerta lógica digital que implementa la disyunción lógica negada -se comporta de acuerdo a la tabla de verdad mostrada a la derecha. Cuando todas sus entradas están en 0 (cero) o en BAJA, su salida está en 1 o en ALTA, mientras que cuando una sola de sus entradas o ambas están en 1 o en ALTA, su SALIDA va a estar en 0 o en BAJA. NOR es el resultado de la negación de que el operador OR.

AND:
Resultado de imagen para puerta AND
La puerta AND o compuerta AND es una puerta lógica digital que implementa la conjunción lógica -se comporta de acuerdo a la tabla de verdad mostrada a la derecha. Esta tendrá una salida ALTA (1), únicamente cuando los valores de ambas entradas sean ALTOS. Si alguna de estas entradas no son ALTAS, entonces tendrá un valor de salida BAJA (0). Desde el punto de vista funcional, la puerta AND es un multiplicador pues su salida es el producto de sus entradas.1 Adicionalmente, encuentra el mínimo entre dos dígitos binarios

NAND:
Resultado de imagen para puerta NAND
La puerta NANDcompuerta NAND o NOT AND es una puerta lógica que produce una salida falsa solamente si todas sus entradas son verdaderas; por tanto, su salida es complemento a la de la puerta AND, -se comporta de acuerdo a la tabla de verdad mostrada a la derecha. Cuando todas sus entradas están en 1 (uno) o en ALTA, su salida está en 0 o en BAJA, mientras que cuando una sola de sus entradas o ambas están en 0 o en BAJA, su SALIDA va a estar en 1 o en ALTA.

NOT:

Resultado de imagen para puerta NOT
En lógica digital, un inversorpuerta NOT o compuerta NOT es una puerta lógica que implementa la negación lógica . A la derecha se muestra la tabla de verdad. Siempre que su entrada está en 0 (cero) o en BAJA, su salida está en 1 o en ALTA, mientras que cuando su entrada está en 1 o en ALTA, su SALIDA va a estar en 0 o en BAJA.
La función física del inversor, es la de cambiar en su salida el nivel del voltaje de su entrada entre los definidos como lógico ALTO Y lógico BAJO.

lunes, 8 de mayo de 2017

CONDENSADOR

                                           CONDENSADOR


Se denomina condensador al dispositivo formado por dos placas conductoras cuyas cargas son iguales pero de signo opuesto. Básicamente es un dispositivo que almacena energía en forma de campo eléctrico. Al conectar las placas a una batería, estas se cargan y esta carga es proporcional a la diferencia de potencial aplicada, siendo la constante de proporcionalidad la capacitancia: el condensador.

Recuerda que la carga electrica es la cantidad electrica. Si no tienes claro lo que es la carga o quieres saber mas sobre carga y otras magnitudes te recomiendo el siguiente enlace: Magnitudes Electricas

Hay muchos tipos de condensadores y cada uno tienes sus funciones especiales.
Resultado de imagen para condensador












¿como almacena la carga un condensador? 

Para alamacenar la carga electrica, utiliza don placas o superficies conductoras en forma de laminas separadas por un material dielectrico (aislante). Estas placas son las que se encargan electricamente cuando lo conectamos a una Bateria o a una fuente de tension. Las placas se cargaran con lamisma cantidad de carga pero con distintos  signos ( una + y la otra es - ). Una vez cargado ya tenemos entre las dos placas una d.d.p o tension, y estara preparado para soltar esta carga cuando lo conectemos a un receptor de salida.

unidades de medida de un condensador.

La unidad medida de los condensadores es el faradio. Este es usado en redes eléctricas de tamaño monumental, por lo que en electrónica se hace necesario utilizar pequeñas fracciones del faradio.
Microfaradio,  (uF), equivale a una millonésima parte de un faradio (0.000001 F).
Nanofaradio (nF), equivale a una milmillonésima parte de un faradio (0.000000001 F).
Picofaradio (pF), equivale a una billonésima parte de un faradio (0.000000000001 F).


Ya que el tamaño de los condensadores electrolíticos es considerable, llevan marcados en su superficie, la capacidad, la polaridad  y la tensión máxima de trabajo. En estos componentes es muy importante tener en cuenta el voltaje máximo de trabajo y la polaridad, pues en el caso de necesitar una mayor tensión, aumenta el tamaño y por lo tanto su precio. Cuando se usa un condensador que esta por debajo de la tensión requerida, con el tiempo puede llegar e reventarse.
Los condensadores electrolíticos tienen como valores usuales los 1, 1,5, 2,2, 3,3 4,7 y  6,8 microfaradios  y sus múltiplos de 10.

Los condensadores variables son dieléctricos de mica y aire. Se usan como sintonizadores, Trimmers y Padders, estos se usan como herramientas de calibración.

miércoles, 28 de septiembre de 2016

Que es un contactor?

                                                    CONTACTOR

Un contactor es un componente electromecánico que tiene por objetivo establecer o interrumpir el paso de corriente, ya sea en el circuito de potencia o en el circuito de mando, tan pronto se dé tensión a la bobina (en el caso de contactores instantáneos). Un contactor es un dispositivo con capacidad de cortar la corriente eléctrica de un receptor o instalación, con la posibilidad de ser accionado a distancia, que tiene dos posiciones de funcionamiento: una estable o de reposo, cuando no recibe acción alguna por parte del circuito de mando, y otra inestable, cuando actúa dicha acción. Este tipo de funcionamiento se llama de "todo o nada". En los esquemas eléctricos, su simbología se establece con las letras KM seguidas de un número de orden.
  

Resultado de imagen para QUE ES UN CONTACTOR




Los contactos principales se conectan al circuito que se quiere gobernar. Asegurando el establecimiento y cortes de las corrientes principales y según el número de vías de paso de corriente podrá ser bipolar, tripolar, tetrapolar, etc. Realizándose las maniobras simultáneamente en todas las vías.
Los contactos auxiliares son de dos clases: abiertos, NA, y cerrados, NC. Estos forman parte del circuito auxiliar del contactor y aseguran las auto alimentaciones, los mandos, enclavamientos de contactos y señalizaciones en los equipos de automatismo.
Cuando la bobina del contactor queda excitada por la circulación de la corriente, esta mueve el núcleo en su interior y arrastra los contactos principales y auxiliares, estableciendo a través de los polos, el circuito entre la red y el receptor. Este arrastre o desplazamiento puede ser:
  • Por rotación, pivote sobre su eje.
  • Por traslación, deslizándose paralelamente a las partes fijas.
  • Combinación de movimientos, rotación y traslación.
Cuando la bobina deja de ser alimentada, abre los contactos por efecto del resorte de presión de los polos y del resorte de retorno de la armadura móvil. Si se debe gobernar desde diferentes puntos, los pulsadores de marcha se conectan en paralelo y el de parada en serie.

                                           Características Básicas

• Elevada frecuencia de maniobra [ 10 ~ 103 M/h ]. vida [ 105 ~ 107 Man]
 • Mando eléctrico a distancia.
 • Fácil integración en sistemas de automatización, puede se mandado por otros dispositivos, puede accionar otros dispositivos.

Línea completa

La línea completa de contactores para corriente alterna es capaz de comandar motores desde los 9 A (5.5 HP 3x380 V) hasta 600 A (400 HP 3x380 V) en 17 modelos, lo que posibilita una optimización en los costos y cubre con creces las necesidades de los mercados más exigentes.

Doble rango de frecuencia

Todos los modelos poseen un diseño que permite su accionamiento con tensiones de comando de 50/60 Hz.

Montaje sobre riel DIN

Los Contactores desde 9 hasta 50 Amp. pueden ser montados sobre riel DIN

Fácil recambio de los contactos

Toda la línea permite el cambio de los contactos principales y auxiliares. Los contactores de la gama superior poseen un exclusivo sistema patentado por HITACHI mediante el cual, luego de retirar el cabezal fijo, se pueden reemplazar los contactos con un simple giro de su guía y sin necesidad de quitar los resortes.

Contactos auxiliares autolimpiantes

Los contactores H poseen un diseño autolimpiante que permite romper la pequeña película que se forma naturalmente sobre los mismos logrando una segura conexión.

Alta seguridad

Mecanismo de prevención contra operaciones erróneas. El accionamiento del cabezal móvil del contactor puede ser comprobado abriendo el indicador (H65C a H600C).
Cada contactor se presenta con una etiqueta frontal con su identificación
Los modelos a partir del H65 contienen un indicador de estado que cambia de color, de verde a rojo según se encuentre abierto o cerrado.

Larga vida eléctrica

Los contactores poseen una larga vida eléctrica producto de la elección de adecuadas aleaciones de Ag/Ocd.

Larga vida mecánica


La larga vida mecánica de estos aparatos se basa principalmente en el perfecto balance de las masas en movimiento y la óptima calidad del FE/Si.

                 Aplicaciones de el contactor

Las aplicaciones de los contactores, en función de la categoría de servicio, son:
Categoría de servicio

Aplicaciones
AC1
Cargas puramente resistivas para calefacción
eléctrica,...
AC2
Motores asíncronos para mezcladoras, centrífugas,...
AC3
Motores asíncronos para aparatos de aire acondicionado, compresores, ventiladores,...
AC4
Motores asíncronos para grúas, ascensores,...
EJEMPLO
Elegir el contactor más adecuado para un circuito de calefacción eléctrica, formado por resistencias débilmente inducidas, cuyas características son las siguientes:
- Tensión nominal: 220 V
- Potencial total: 11 kW
- Factor de potencia: 0,95 inductivo.

Solución:
1. La corriente de servicio se obtiene aplicando la expresión de la potencia en circuito trifásico: Ic = P / raizcad3 * V * cosj = 30,5 A
2. La categoría es AC1, por ser resistivo el receptor y su factor de potencia próximo a la unidad.
3. La corriente cortada es igual a la servicio, por lo que el calibre del contactor a elegir es de 32 A.


       PARTES DE UN CONTACTOR

Carcasa

Es el soporte sobre el cual se fijan todos los componentes conductores al contactor. Está fabricado en material no conductor, posee rigidez y soporta el calor no extremo. Además, es la presentación visual del contactor.

Electroimán

Es el elemento motor del contactor. Está compuesto por una serie de dispositivos. Los más importantes son el circuito magnético y la bobina. Su finalidad es transformar la energía eléctrica en magnetismo, generando así un campo magnético muy intenso, que provocará un movimiento mecánico.

Bobina

Es un arrollamiento de alambre de cobre muy delgado con un gran número de espiras, que al aplicársele tensión genera un campo magnético. Éste a su vez produce un campo electromagnético, superior al par resistente de los muelles, que a modo de resortes separan la armadura del núcleo, de manera que estas dos partes pueden juntarse estrechamente. Cuando una bobina se alimenta con corriente alterna, la intensidad que absorbe (denominada corriente de llamada) es relativamente elevada, debido a que el circuito solo tiene la resistencia del conductor.
Esta corriente elevada genera un campo magnético intenso, de manera que el núcleo puede atraer a la armadura y vencer la resistencia mecánica del resorte o muelle que los mantiene separados en estado de reposo. Una vez que el circuito magnético se cierra, al juntarse el núcleo con la armadura, aumenta la impedancia de la bobina, de tal manera que la corriente de llamada se reduce, obteniendo así una corriente de mantenimiento o de trabajo más baja. Se hace referencia a las bobinas de la siguiente forma: A1 y A2.

Núcleo

Es una parte metálica, de material ferromagnético, generalmente en forma de E, que va fijo en la carcasa.Su función es concentrar y aumentar el flujo magnético que genera la bobina (colocada en la columna central del núcleo), para atraer con mayor eficiencia la armadura.

Espira de sombra

Se utiliza para evitar las vibraciones en un contactor. Se la coloca de tal manera que abrace parte del campo magnético de la fuerza de atracción que une el hierro fijo con el hierro móvil. Cuando se opera con corriente alterna, esta fuerza de atracción desaparece debido a los ciclos de la corriente, generando que el hierro móvil se desprenda y se vuelva a pegar al hierro fijo generando vibraciones. Para evitarlo, la espira de sombra desfasa en el tiempo parte del flujo magnético, lo que a su vez desfasa en el tiempo la fuerza de atracción obteniéndose 2 fuerzas que trabajan en conjunto para evitar las vibraciones. En caso de operar con corriente continua no es necesario utilizar espira de sombra debido a que el flujo magnético es constante y no genera vibraciones.

Armadura

Elemento móvil, cuya construcción es similar a la del núcleo, pero sin espiras de sombra. Su función es cerrar el circuito magnético una vez energizadas la bobinas, ya que debe estar separado del núcleo, por acción de un muelle. Este espacio de separación se denomina cota de llamada.
Las características del muelle permiten que tanto el cierre como la apertura del circuito magnético se realicen muy ràpido, alrededor de unos 10 milisegundos. Cuando el par resistente del muelle es mayor que el par electromagnético, el núcleo no logrará atraer a la armadura o lo hará con mucha dificultad. Por el contrario, si el par resistente del muelle es demasiado débil, la separación de la armadura no se producirá con la rapidez necesaria.

Contactos


Simbología de polos(arriba) y Contactos Auxiliares(abajo).
Son elementos conductores que tienen por objeto establecer o interrumpir el paso de corriente en cuanto la bobina se energice. Todo contacto está compuesto por tres conjuntos de elementos:
  • Dos partes fijas ubicadas en la coraza y una parte móvil colocada en la armadura para establecer o interrumpir el paso de la corriente entre las partes fijas. El contacto móvil lleva el mencionado resorte que garantiza la presión y por consiguiente la unión de las tres partes.
  • Contactos principales: Su función es establecer o interrumpir el circuito principal, consiguiendo así que la corriente se transporte desde la red a la carga. Simbología: se referencian con una sola cifra del 1 al 6.
  • Contactos auxiliares. Su función específica es permitir o interrumpir el paso de la corriente a las bobinas de los contactores o los elementos de señalización, por lo cual están dimensionados únicamente para intensidades muy pequeñas. Los tipos más comunes son:
  • Instantáneos. Actúan tan pronto se energiza la bobina del contactor. Se encargan de abrir y cerrar el circuito.
  • Temporizados. Actúan transcurrido un tiempo determinado desde que se energiza la bobina (temporizados a la conexión) o desde que se desenergiza la bobina (temporizados a la desconexión).
  • De apertura lenta. El desplazamiento y la velocidad del contacto móvil es igual al de la armadura.
  • De apertura positiva. Los contactos cerrados y abiertos no pueden coincidir cerrados en ningún momento.
En su simbología aparecen con dos cifras donde la unidad indica:
  • 1 y 2, contacto normalmente cerrados, NC.
  • 3 y 4, contacto normalmente abiertos, NA.
  • 5 y 6, contacto NC de apertura temporizada o de protección.
  • 7 y 8, contacto NA de cierre temporizado o de protección.
por su parte, la cifra de las decenas indica el número de orden de cada contacto en el contactor. En un lado se indica a qué contactor pertenece.

Relé térmico

El relé térmico es un elemento de protección que se ubica en el circuito de potencia, contra sobrecargas. Su principio de funcionamiento se basa en que el aumento de temperatura deforma de ciertos elementos bimetales, para accionar, cuando alcanza ciertos valores, unos contactos auxiliares que desactiven todo el circuito y energicen al mismo tiempo un elemento de señalización.
El bimetal está formado por dos metales de diferente coeficiente de dilatación y unidos firmemente entre sí, regularmente mediante soldadura de punto. El calor necesario para curvar o reflexionar la lámina bimetálica lo produce una resistencia, arrollada alrededor del bimetal, que está cubierto con asbesto, a través de la cual circula la corriente que va de la red al motor.
Los bimetales comienzan a curvarse cuando la corriente sobrepasa el valor nominal para el cual se han dimensionado, empujando una placa de fibra hasta que se produce el cambio de estado de los contactos auxiliares que lleva.

Resorte

Es un muelle encargado de devolver los contactos a su posición de reposo una vez que cesa el campo magnético de las bobinas.

*Para mas informacion sobre contactores, te invito a ver el siguiente video:

 https://www.youtube.com/watch?v=zMKK8nhnD_A






jueves, 30 de junio de 2016


CIRCUITO RL

Un circuito RL es un circuito eléctrico que contiene una resistencia y una bobina en serie. Se dice que la bobina se opone transitoriamente al establecimiento de una corriente en el circuito.
Circuitos

CARACTERISTICAS:

Se le llama circuito RL : 
R:Resistencia
L: Es la bobina. 
Corriente Alterna es decir que la corriente o la tension varia mucho en su direccion, es decir la tension puede ir o por arriba positivo y abajo negativo como tambien arriba negativo y abajo positivo.

tensión en la bobina está en fase con la corriente (corriente alterna) que pasa por ella (tienen sus valores máximos simultáneamente).

La tensión en la bobina está en fase con la corriente (corriente alterna) que pasa por ella (tienen sus valores máximos simultáneamente)


APLICACIONES:

La corriente que circula por el circuito depende del valor de la  resistencia y la reactancia inductiva de la bobina, que en su conjunto se llama  impedancia  y es igual a:

I= E/Z, donde Z = √R² + XL²
VR = R*I,  VL = XL*I, donde XL = 2π*f*L

Existen unas leyes fundamentales que rigen a cualquier circuito eléctrico. Estas son:

Ley de corriente de Kirchhoff: La suma de las corrientes que entran por un nodo deben ser igual a la suma de las corrientes que salen por ese nodo.

FUNCIONES:
Ley de tensiones de Kirchhoff: La suma de las tensiones en un lazo debe ser 0.

Ley de Ohm: La tensión en una resistencia es igual al producto del valor dicha resistencia por la corriente que fluye a través de ella.

Teorema de Norton: Cualquier red que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de corriente en paralelo con una resistencia.

Teorema de Thévenin: Cualquier red que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de tensión en serie con una resistencia.



jueves, 26 de mayo de 2016

RELE- CORRIENTE ALTERNA- OSCILOSCOPIO.

RELE
DEFINICIÓN:
-El reilé (en francés, relais, “relevo”) o relevador es un dispositivo electromagnético. Funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes. Fue inventado por Joseph Henry en 1835.
Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores“





-Funcionamiento:
El electro imán hace girar la armadura verticalmente al ser alimentada, cerrando los contactos dependiendo de si es N.A ó N.C (normalmente abierto o normalmente cerrado). Si se le aplica un voltaje a la bobina se genera un campo magnético, que provoca que los contactos hagan una conexión. Estos contactos pueden ser considerados como el interruptor, que permite que la corriente fluya entre los dos puntos que cerraron el circuito.



-Aplicaciones:
-Aislación eléctrica entre motores/solenoides en campo y circuitos de comando 
- Protección de entradas y salidas de CLP a través de la aislación galvánica
- Seguridad para accionamientos de cargas de alta corriente a través de señales de baja corriente.
 Aplicaciones aconsejables:
- Cuando se requiere una elevada frecuencia de conmutación
- Cuando es necesaria una larga vida útil o alta confiabilidad
- Cuando se necesita un tiempo de respuesta 
reducido.


CORRIENTE ALTERNA


 Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente.
La forma de oscilación de la corriente alterna más comúnmente utilizada es la oscilación senoidal con la que se consigue una transmisión más eficiente de la energía, a tal punto que al hablar de corriente alterna se sobrentiende que se refiere a la corriente alterna senoidal.
Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (omodulada) sobre la señal de la CA.




COMO SE GENERA LA CORRIENTE ALTERNA:
La corriente alterna se produce en los generadores de c. a. El proceso ocurre cuando una bobina se mueve frente a un imán, los electrones se mueven en el hilo de la bobina. Ver generador.
La c. a. consiste en un movimiento oscilatorio de los electrones. Estos no se desplazan a lo largo del hilo conductor y simplemente oscilan respecto a un punto.
El campo electro-magnético que crean los e
- con sus oscilaciones se desplaza por el hilo a la velocidad de la luz (c= 3·10 8 m/s) y a esa velocidad se desplaza la señal eléctrica. Es como si los efectos eléctricos se transmitieran por "corre bola" al otro lado casi instantáneamente.
La intensidad de una corriente alterna se debe al mayor o menor número de electrones que oscilan en cada sección del conductor. Su medida la da la carga en culombios que atraviesan la sección del conductor en un segundo, y su unidad es el amperio.
La corriente alterna se puede trasladar a grandes distancias, minimizando el efecto de la resistencia de los cables, bajando la intensidad a la que se traslada. Al mismo tiempo que se baja la intensidad se sube el potencial, por eso se transporta en líneas de alta tensión.
Para subir y bajar el voltaje se usan transformadores.
Los transformadores no se pueden usar con corriente continua.
A cada vivienda llegan dos cables: la Fase y el Neutro. Si medimos el voltaje entre la fase y el neutro hay aproximadamente unos 220 V y entre el neutro y una toma de tierra, como una tubería, debería dar cero pero, como es muy difícil equilibrar exactamente las conexiones desde el transformador, puede haber un voltaje de varios voltios.



OSCILOSCOPIO
Un osciloscopio es un instrumento de visualización electrónico para la representación gráfica de señales eléctricas que pueden variar en el tiempo. Es muy usado en electrónica de señal, frecuentemente junto a un analizador de espectro.
Presenta los valores de las señales eléctricas en forma de coordenadas en una pantalla, en la que normalmente el eje X (horizontal) representa tiempos y el eje Y (vertical) representa tensiones. La imagen así obtenida se denomina oscilograma. Suelen incluir otra entrada, llamada "eje THRASHER" o "Cilindro de Wehnelt" que controla la luminosidad del haz, permitiendo resaltar o apagar algunos segmentos de la traza.
Los osciloscopios, clasificados según su funcionamiento interno, pueden ser tanto analógicos como digitales, siendo el resultado mostrado idéntico en cualquiera de los dos casos, en teoría.


                                           Utilización

En un osciloscopio existen, básicamente, dos tipos de controles que son utilizados como reguladores que ajustan la señal de entrada y permiten, consecuentemente, medir en la pantalla y de esta manera se puede ver la forma de la señal medida por el osciloscopio, esto denominado en forma técnica se puede decir que el osciloscopio sirve para observar la señal que quiera medir.
Para medir se lo puede comparar con el plano cartesiano.
El primer control regula el eje X (horizontal) y aprecia fracciones de tiempo (segundosmilisegundosmicrosegundos, etc., según la resolución del aparato). El segundo regula el eje Y (vertical) controlando la tensión de entrada (en Voltios, milivoltios, microvoltios, etc., dependiendo de la resolución del aparato).
Estas regulaciones determinan el valor de la escala cuadricular que divide la pantalla, permitiendo saber cuánto representa cada cuadrado de ésta para, en consecuencia, conocer el valor de la señal a medir, tanto en tensión como en frecuencia. (en realidad se mide el periodo de una onda de una señal, y luego se calcula la frecuencia)

¿Qué podemos hacer con un osciloscopio?

Básicamente esto:
  • Determinar directamente el periodo y el voltaje de una señal.
  • Determinar indirectamente la frecuencia de una señal.
  • Determinar que parte de la señal es DC y cual AC.
  • Localizar averias en un circuito.
  • Medir la fase entre dos señales.
  • Determinar que parte de la señal es ruido y como varia este en el tiempo.

¿Como funciona un osciloscopio?

Para entender el funcionamiento de los controles que posee un osciloscopio es necesario deternerse un poco en los procesos internos llevados a cabo por este aparato. Empezaremos por el tipo analógico ya que es el más sencillo.